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RADIAL INERTIA EFFECTS ON AN IDEALLY PLASTIC
CIRCULAR PLATE UNDER IMPULSIVE AXIAL COMPRESSION

N. Davips, G. PuttalaH and P. K. MEHTA

Department of Engineering Mechanics, The Pennsylvania State University

Abstract—An analysis is presented here of the dynamic problem of a circular rigid-perfectly-plastic plate forged
between two rigid plates under a number of input conditions. It is shown that the radial inertia of the deforming
plate has a significant effect, and hence the results of this dynamic solution differ for instance, for high axial
strain rates from those which would have been obtained under static conditions, for which an exact mathematical
solution already exists{1].

The approach used is that of finite element analysis. The analysis is applied to some cases of practical interest.
Input conditions treated are (a) prescribed axial strain rate, (b) axial strain rate dependent on plate thickness and
time, (c) constant forging power and (d) constant compression total force.

A previously known static solution [1] is obtained with excellent agreement, as a special case of this analysis,
by taking very small axial strain rates.

NOTATION
a acceleration of ith element
a acceleration of the c.g. of ith element
bo initial radius of plate
b current radius of plate
F; x-component of resultant force on ith element
hy initial thickness of plate
h current thickness of plate
i cell index
m; mass of ith element
N identification coefficient for dynamic and quasi-static solutions
Ny coeflicient, identifying transition from sliding to sticking at contact surface

1—-N,
N, uN, + (ri—ris1)

2
4 axial pressure, psi
r radial coordinate
r; radial coordinate of ith element
P radial coordinate of c.g. of ith element
o transition radius
t time
v particle velocity
v! velocity of ith element at radius r;
o velocity of c.g. of ith element
Y yield stress in uni-axial tension
Y, yield stress in shear = Y/2
z axial coordinate
a wri—riyq)
B ratio of distance of mass centre to average radius of the semi ring element from centre
14 tangential co-ordinate
€ strain
£ strain rate

1221



1222 N. Davibs, G. PurtalaH and P. K. MEHTA

normal stress

surface shear force per unit area

flow parameter

coefficient of friction between plate and forge-head

h JEIY

INTRODUCTION

THE PROCESS of sudden or rapid squeezing of a plastic material between two plates has been
both of basic and applied interest. If the material is in the form of a circular plate and squeez-
ing plates are assumed rigid, we have a geometrical set-up which is simple enough to allow
theoretical analysis and experimental study of the laws of plasticity involved in the lateral
{i.e. radial) motion of such a material when yielded. Forging processes also are based on
making optimum use of the relationships between deformation of the specimen and the
form of the applied pressure.

A relation exists between this arrangement and the lateral deformation which occursina
projectile striking a rigid target, say. This is a problem studied by Taylor [3], Lee and
Tupper [4], Raftopoulos and Davids [5], and others. In the projectile problem we have one
plate instead of two. However, the velocities here, which are of the order of 1000-3000 ft/sec.
are high enough to bring into play lateral inertia forces in the deforming material which,
as will be shown in this paper, appreciably affect the deformation.

Until now the “forging” problem has been limited to slow-deformation, i.e. static
analysis. Our aim here is to show how a dynamic analysis can be made, i.e. one which
includes the inertia effects, and, under high deformation rates, that the lateral inertia effects
are appreciable.

1. BASIC PLASTICITY THEORY
We assume that the material is incompressible and obeys the Levy—Mises flow rule [2].
&,/0, = Eg/00 = £./0 (1.1)

where ¢., 0, o, are deviatoric stresses. It is further assumed that the forge heads are rigid,
so that we have axial strain rates independent of rand 0, i.e.

&, = &4t z). (1.2
Then it can be shown, [1] for cylindrical symmetry, that
v, = —{1/2),r (1.3)
and that
gy = & = —(1/2), (1.4)
From (1.1) and (1.4)
64 = O, (1.5)

For such a “cylindrical” stress state the yield conditions of either Tresca or Von Mises
give the same relation

6,—0, = 0g—0, =7 (1.6}
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and since
o= -p, (L7
6, =0q= Y+o,=Y—p. (1.8)
Formulas (1.3) to (1.8) apply where ¢, is independent of rand 6.

2. FINITE ELEMENT ANALYSIS OF FORGING PROBLEM

The analysis begins by dividing up the plate into a set of semi-circular ring elements
i=1,...i, counted from outside inward. Figure 1 shows a sample element and the forces
acting on it, shown corresponding to positive values of the stresses.

Analysis of force and stresses due to radial inertia
By Newton’s law of motion, the net x-component of total force on the semi-ring is

F, = ma 2.1)

where & refers to the acceleration of the ¢.g. of the element. This is then related geometrically
to that of the element by the relation

a; = (Ry/Rjas = B 2.2)

To calculate f§; we have
R; = f (rcos@)dA/A

and
Ri=(ris1+71)/2

which, on carrying out the indicated surface integration, gives

Bi = @301 —riie fris +1)) (2.3)
Referring to Fig. 1, we get F;:
F, = oi(2rih)— o[ (2r;4 1) — 05(2r; = 2r; Dh+ FL. (a)
T
i
dA Je
P P _—
r i+lx
ri

Fh—

F1G. 1. Finite element division of plate.
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Since o, is not a constant across the element, we obtain an average value for tangential
stress (a,) using (1.5), as follows :

a5 = o, +a)). (b)

Frictional contribution to x-component of force

Since the surface shearing force per unit area t results from friction on the element,
we have

T=po, = —up ifv,#0
=0 ifv,=0

ie. if the element is moving outward, the friction force actually is negative. Its value is
calculated as follows : Referring to Fig. 1, by integrating over the surface areas of the element
normal to the axis,

FL =2 f ticos 0dA = 2uéi(r? —ri ) ©

where ' is the average stress on the element. From (1.6),

5. =¥o"  +a)-Y

giving
F, = o™ ' +0,—2Y)(r} —risy). (d)
Substituting (b) and the expression for F, (sliding only) from (d) into (a) and simplifying:
oit! = [(h+a)oi—20;Y—F/(r;+ris)}/(h— o) (2.4)

where
A = Wri—rivq) (2.5)

In this way, an inductive relation is obtained which gives the (i + 1)th stress from the ith
value, supposedly known.

Sticking of plate. For sufficiently large normal pressure the material sticks to the forging
plate and yields internally instead in shear. It can then be shown by integration, starting
from the condition Y, = Y/2, that

F, = =Y} —riy). ()

The expression (2.4) for the radial stress, written so as to include both cases, may now be
written

oi*! = [oih+ Nio)— 2N, Y~ F/(ris 1 +r)l/(h— Na;) (2.6)
where
N; =1 sliding
N, =0 sticking
and

N, = (ﬂN1+(1’N1)/2)("i"ri+1)- 2.7
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From the yield criterion (1.8), the axial pressure is given by

pi=Y~- o} (2.8)
New plate thickness
B = h(1 +§,At). (2.9

If ¢, is prescribed as a function of time we use the average current value at .

New radius of plate
ri = ri+uviAt. (2.10)

Thus we have shown how all the dynamical variables may be calculated at the end of the
prescribed time interval At from their values at the beginning. In this way, after updating
the time by setting

U =t+At

we may continue this process again until any desired termination.

3. INPUT CONDITIONS

The analysis presented above was applied to a number of input conditions, as described
below.

Case 1—¢, a constant or a prescribed function of time

The steps in the procedure are as follows:

(a) from (1.3) the values of vl are known at time ¢ for all radii r;.

(b) the accelerations of each semi-ring are calculated from (2.2).

(¢c) the forces F,; are then determined from (2.1).

(d) from the boundary condition ¢! = 0 for the outermost element, the oi*! are cal-

culable from (2.6).

(e) the pressures p; are then obtained from (2.8).

(f) the new element thickness is then obtained from (2.9).

(g) the final radius at the end of each time interval is given by (2.10).

Steps (a) to (g) are repeated for any specified number of time intervals until the forging
process is terminated.

If a small value is taken for ¢, say 0-01/sec we obtain the static solution, previously
known mathematically [1]. Also, if the radial inertia forces are omitted from the analysis,
even though a high input rate is specified, i.e. the so-called quasi-static case, the results
differ appreciably, as will be seen.

Physically, it is necessary to decrease the applied strain rate with time as the thickness
of the plate becomes smaller. However, the analysis is the same as the previous one.

Case 2—, a function of plate thickness
The same analysis applies for any prescribed thickness function.

Case 3—Forging power prescribed

Equating the rate of energy dissipation of a volume V of rigid-plastic material to the
power supplied [2], say by the forging machine, we have

Fv, = (0,6, + 049+ 0.,)V (3.1)
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where F is the applied force and ¢’ the deviatoric stresses. Applying (1.5), this becomes
Fv, = 26,—0,)¢,V =2YW,/r

which gives
v, = Fo,r2YV

The average velocity of the ith elementary semi-ring is
vi = Fo(ri+r;1)/4YV (3.2)

Thus, if Fu, is given, the radial velocities of the elements can be calculated, and from this
radial inertia forces obtained as previously. Since ¢, is assumed independent of radius, the
remaining analysis, including determination of pressure distribution and radius of the
plate is the same as in Case 1. The plate thickness is calculated from the incompressibility
condition.

Case 4—Constant applied force on plate

Since the total force acting on the plate does not come into the analysis directly, an
inverse iterative procedure is needed here. We start with an assumed value for ¢, then
integrate the resulting pressure distribution over the plate area to obtain the total force,
which is then compared with the specified value of the force. If the two differ, ¢, is altered
by a suitable small increment and the process repeated until the error is less than a specified
amount. The value of é, which gives the correct force is then used to obtain radius and
thickness as in Case 1.

4. RESULTS

(a) Numerical computation

The analysis presented above is easily adapted for use in a computer. For the results
shown here, the total number of elements i,, was 25. At first 20 elements were used, with no
appreciable loss of accuracy. The time interval At = 1 u sec. This was found to be just as
accurate as At = 0-5 u sec. The total computer time averaged about 1 min on the IBM 7074
computer.

(b) Discussion of results

In all the results presented, quasi-static analysis (neglect of radial inertia) is compared
with our dynamic analysis. They differ considerably, especially with increase of the input
variable, e.g. axial strain rate or total force.

Figure 2 shows non-dimensional pressure against plate radius for very small axial
strain rate. As seen, the results coincide with those obtained mathematically {1]. Figure 3
shows pressure distribution for various constant axial strain rates. The transition radius
(sticking to sliding) for quasi-static differs markedly from the dynamic analysis. While the
pressure is linear in the sticking zone for quasi-static case, it becomes non-linear for the
dynamic case. As can be seen, pressure on the plate is strongly influenced by axial strain rate.
Thus we see the importance of including the effect of radial inertia.

Figure 4 shows how axial pressure at the plate centre varies with time. Note that the
pressure not only increases but accelerates with time. This is because an increasing pressure
is required to maintain the constancy of the axial strain rate.



Radial inertia effects on an ideally plastic circular plate under impulsive axial compression 1227

by =10 in
ho = 0.2 in
6.0f~—— STICKING SUDING Y =20xI0% psi
1 p =020
40k éz = 0.0l /sec
p/Y ©  Direct Analysts
L Mathematical
20 Analysis
L, 1 1 1 |
0 0.2 04 06 08 10
r/bo

F1G. 2. Forging pressure distribution, Static case at £ = 2 usec.

An interesting variation of this problem is seen in Fig. 5, where we have a linearly de-
creasing strain rate with time. This is physically more reasonable than the constant case.
For the highest rates shown (¢,, = 25,000 and 30,000) the axial pressure vanishes respec-
tively at t = 13 and 18-2 usec and then actually goes negative, according to this analysis.
This may be explained on the basis of the high radial inertia of the deforming material,

po: 0.20
t = 2 x1078sec

DYNAMIC
ok -———QUASI - STATIC
0 | | ] ] 1 ] ! | L J;
0.l 02 03 04 05 06 07 08 09 10

r/bo

F1G. 3. Pressure profile comparison between Dynamic and Quasi-static solutions for constant Axial
Strain Rate inputs at 7 = 2 usec.
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Plr=g/ Y

which tends to keep the plate thickness decreasing faster than the externally applied
excitation. Of course, the actual behavior of the material under tension may be different

N. Davis, G. Purraiae and P. K. Meuta

u =020

—menm DY NAMIC
=~ QUASI-STATIC

F16. 4. Axial pressure at plate centre vs. tinte for Axial Strain Rates.

from what we have assumed it to be.

The remaining figures (Figs. 6-8) show pressure profiles over the plate for the remaining
input conditions described in this paper, e.8. where axial strain rate is a linear function of

» ,..« t
EZ *£ZO [l"“m]

b= time in g sec €20
DYNAMIC

o ol STATIC T 30000
’l/’::/-’.—* 25000

T T =T 5000

60}- e e T T e 10000
Ple=o/Y 10000
15000

4
e 20000

0 i i3 i i { ] i
F 4 6 8 10 2 73 i3 20
t X;QSSEC 30000 25000
'Z.OL

FIG. 5. Axial pressure at plate centre vs. time for Axial Strain Rates linearly decreasing with time.
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Fi1G. 6. Pressure profile comparison between Dynamic and Quasi-static solutions for Axial Strain Rates
linearly varying with plate thickness at t = 2 usec.

plate thickness, where the total axial force, and the total power are prescribed. We note
that the fastest cases differ from the quasi-static result by as much as two to five times.

Further implications of the analysis become apparent if the velocities of impact are
increased still further. The inertia effects analyzed here become considerably greater and
may, in fact, dominate the deformation behavior of the material. Further work is being done,
using this method, for free plates and for input conditions variable with radius.

——DYNAMIC p=0.20

———QUASI -STATIC

8
F=2.4x10%Ibs.

1.32 % 10% Ibs,

T
/
/
/
/
1

[ 1
0 0.l 02 0.3 04 05 06 07 08 09 1.0 Ll
r/b

F1G. 7. Pressure profile for constant total axial force at 1 = 2 psec.



1230 N. Davips, G. PuTTAlAH and P. K. MEHTA

WOy, - DYNAMIC
6108 ———quasi-statc = 0.20
90 t =21 sec
~5x%108 ®
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Ixd —~— ——
\\\.\
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FiG. 8. Pressure profile comparison between Dynamic and Quasi-static static solutions for power inputs
att = 2 usec.
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AbcrpaxT—/laerca pemeHre JMHAMKYECKON 3aa9u KPYIo#, )XeCTKOUACAIbHO-TUIACTUYECKOM IUTACTHHKH,
BBHIKOBAHHOM MEXAY HBYMA XKECTKHMH IUIACTHHAMH, IO BIIUSHEEM HEKOTOPOrO YMCIIA 3aaHHBIX YCIOBUM.
IToka3aHo, uTo paAuaibHas wHEpUusS neGOPMMPOBAHHOMN IUIACTMHKY BHI3BIBACT 3HAYMTCNBHBHL 3ddexT.
CnenoparTenbHO pe3ybTaThl STHX INHHAMMYECKMX DPeIleHHMH OTNHYAIOTCH, Ha NpHMeEp, INs OOJbImX
ckopocTelk ocobbix aedopManuif, OT TaKuX, KOTOPBIE TMONYYAIOTCs TIPHHUMAasA BO BHUMAHHUE CTATHYECKUE
YCIOBHY, ISl KOTODBIX YXKe CYILIECTBYET TOYHOE MaTeMaTu4yeckoe pemenue [I].

Hcnons3yercss MeTof pacyera KOHedHoro »neMeHTta. IIpumensiercs pacyeT K HEKOTOPBIM ClIydasM,
HMMEIOLIMM NPAKTHYECKOE 3HAYeHMe. PaccMaTpuBaloTes Cliefyrolnne 3aiaHHbIe YCIOBHA:

a/ 3aiaHHas CKOPOCTh ocesol medropmanum,
6/ coxpocrs aethopmanmy 3aBucANIas OT TOMHAHEI IUTACTHHKA U BPEMEHH,
B/ MOCTOSIHHAS CHJIA KOBKH M 2/ IIOCTOSHHAA ITONTHAs CHJIA CRATHSA.

IIpuHrMas OYeHb MAJIBIE CKOPOCTH OCEBBIX Jedopmanuii, NoNyyaeTcs Ipeapiayllee H3BeCTHOE CTaTHY~
€CKO€ PellicHHE ¢ HACAIIBHOM CXOIMMOCTHIO, PACCMAaTPHBAEMOE B Ka4eCTBE CICHHANBHOIO C1y4asi HACTOSII-
€ro pacyeTa.



